Merrifield-Simmons index of Graphs

E-seminar, IIT- Kharagpur

Suresh Elumalai,
Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur - 603203.

September 10, 2021

Introduction.

Notations

- G
- m
- n
- $d\left(v_{i}\right)$ Degree of vertex v_{i}.
- $d_{v_{i}} \quad$ Degree of vertex v_{i}.
- $\Delta \quad$ Maximum degree of graph.
- $\delta \quad$ Minimum degree of graph.

Mathematical chemistry

- Chemical graph theory
- Topological indices

Topological index is a numerical value which associate with a graph structure

- Degree Based Indices

- Degree Based Indices

- Distance Based Indices

- Degree Based Indices

- Distance Based Indices

- Energy Based Indices

- Degree Based Indices

- Distance Based Indices
- Energy Based Indices

- Graph Invarients based counting subsets

Independent edge subsets

A matching of G is a set of disjoint edges in G.

Independent edge subsets

A matching of G is a set of disjoint edges in G.
A matching of G is a edge subset in which any two edges cannot share a common vertex.

Independent edge subsets

A matching of G is a set of disjoint edges in G.
A matching of G is a edge subset in which any two edges cannot share a common vertex.

Let $m(G, k)$ denotes the number of $k-$ matchings in $G, k \geq 1$

The simple connected Graph G_{1}

Two-Matchings : 2

(1 red pair and 1 green pair of edges.)

Independent edge subsets

$$
z(G)=\sum_{k \geq 0} m(G, k),
$$

where $m(G, k)$ denotes the number of $k-$ matchings in $G, k \geq 1$.

Independent edge subsets

$$
z(G)=\sum_{k \geq 0} m(G, k),
$$

where $m(G, k)$ denotes the number of k-matchings in $G, k \geq 1$.
$m(G, 0)=1$, where the one corresponds to a matching in a set with zero edges .

Independent edge subsets

$$
z(G)=\sum_{k \geq 0} m(G, k)
$$

where $m(G, k)$ denotes the number of $k-$ matchings in $G, k \geq 1$.
$m(G, 0)=1$, where the one corresponds to a matching in a set with zero edges .

$$
z\left(G_{1}\right)=1+5+2=8
$$

The quantity $z(G)$ associated with a graph was introduced to the chemical literature in 1971 by the Japanese chemist Haruo Hosoya.

Hosaya Index $\quad z(G)$

Independent vertex subsets

Given a graph G, a k-independent set is a set of k vertices, no two of which are adjacent.

Independent vertex subsets

Given a graph G, a k-independent set is a set of k vertices, no two of which are adjacent.

$i(G, k)$ the number of k-independent sets of $G, k \geq 1$.

Independent vertex subsets

Given a graph G, a k-independent set is a set of k vertices, no two of which are adjacent.
$i(G, k)$ the number of k-independent sets of $G, k \geq 1$.

The empty set is an independent set.

Independent vertex subsets

Given a graph G, a k-independent set is a set of k vertices, no two of which are adjacent.
$i(G, k)$ the number of k-independent sets of $G, k \geq 1$.

The empty set is an independent set.
It is both consistent and convenient to define $i(G, 0)=1$.

The simple connected Graph G_{1}

2

3

3

Single vertex set: 4

Independent set of two vertices: 1

The total number of independent vertex sets (including the empty vertex set) of a graph $G=(V, E)$ denoted by $i(G)$.

$$
i(G)=i(G, 0)+i(G, 1)+\ldots+i(G, k)
$$

$$
i(G)=\sum_{k \geq 0} i(G, k)
$$

$$
i\left(G_{1}\right)=1+4+1=6
$$

The quantity $i(G)$ associated with a graph was introduced to the chemical literature in 1980 by the chemists Richard E. Merrifield and Howard E. Simmons .

The quantity $i(G)$ associated with a graph was introduced to the chemical literature in 1980 by the chemists Richard E. Merrifield and Howard E. Simmons .

Merrifield-Simmons index $i(G)$.

Merrifield-Simmons index

In 1980, Merrifield and Simmons elaborated a theory aimed at describing molecular structure by means of finite-set topology

In 1980, Merrifield and Simmons elaborated a theory aimed at describing molecular structure by means of finite-set topology

This was the number of open sets of the finite topology, which is equal to the number of independent sets of vertices of the graph corresponding to that topology.

In 1980, Merrifield and Simmons elaborated a theory aimed at describing molecular structure by means of finite-set topology

This was the number of open sets of the finite topology, which is equal to the number of independent sets of vertices of the graph corresponding to that topology.

The number of independent sets occurred in this framework as the number of open sets of a certain finite topology, and of all the aspects of their theory, it probably received the most attention.

Topological Indices

In chemical literature, the total number of the independent sets of graphs $i(G)$ is referred to as the Merrifield-Simmons index.

Topological Indices

In chemical literature, the total number of the independent sets of graphs $i(G)$ is referred to as the Merrifield-Simmons index.

In chemical literature, the total number of the matchings of graphs $z(G)$ is referred to as the Hosaya index.

3 vertices

3 vertices

$$
i(A)=1+3+1=5 \quad i(B)=1+3=4
$$

Simple connected graph G_{1} on 15 vertices.

Complete Graphs K_{n}.

Complete Graph K_{6}.

Complete Graph K_{6}.

$i\left(K_{6}\right)=7$

Complete Graph $K_{6}-e$.

Complete Graph $K_{6}-e$.

Complete Graph6 $K_{6}-2 e$.

Complete Graph6 $K_{6}-2 e$.

Complete Graph $K_{6}-3 e$.

Complete Graph $K_{6}-3 e$.

(6)
(4)
(2)
(5)
(1)
(6)

$$
\begin{aligned}
i\left(E_{6}\right) & =1+6 C_{1}+6 C_{2}+6 C_{3}+6 C_{4}+6 C_{5}+6 C_{6} \\
& =1+6+15+20+15+6+1 \\
& =64
\end{aligned}
$$

Observation: If edges are removed from a graph, then the Merrifield- Simmons index $i(G)$ increases.

Observation: If edges are removed from a graph, then the Merrifield- Simmons index $i(G)$ increases.

Lemma 1

Let G_{1} and G_{2} be two graphs. If G_{1} can be obtained from G_{2} by deleting some edges, then $i\left(G_{2}\right)<i\left(G_{1}\right)$.

For any simple graph G.

Theorem 2

For every graph G with n vertices, we have

$$
n+1=i\left(K_{n}\right) \leq i(G) \leq i\left(E_{n}\right)=2^{n},
$$

equality in the first inequality only holds if G is complete, and equality in the second inequality only holds if G is edgeless.

If G is a simple connected graph.

If G is a simple connected graph, then

$$
? ? \leq i(G) \leq ? ?
$$

If G is a simple connected graph.

If G is a simple connected graph, then

$$
K_{n} \leq i(G) \leq ? ?
$$

If G is a simple connected graph.

If G is a simple connected graph, then

$$
K_{n} \leq i(G) \leq ? ?
$$

Complete graph on n vertices.

$$
i\left(K_{n}\right)=n+1
$$

Let G be a simple connected graph on n vertices and m

 edges. Then$$
n-1 \leq m \leq \frac{n(n-1)}{2}
$$

Let G be a simple connected graph on n vertices and m

 edges. Then$$
n-1 \leq m \leq \frac{n(n-1)}{2}
$$

Complete graph $K_{n} \rightarrow$ Tree T_{n}

Let G be a simple connected graph on n vertices and m

 edges. Then$$
n-1 \leq m \leq \frac{n(n-1)}{2}
$$

Complete graph $K_{n} \rightarrow$ Tree T_{n}

$$
n+1=i\left(K_{n}\right) \leq i(G) \leq i\left(T_{n}\right)
$$

Trees on 6 Vertices

R. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly, 20(1) (1982) 16-21.

Fibonacci Number	Values
F_{0}	1
F_{1}	1
F_{2}	2
F_{3}	3
F_{4}	5
F_{5}	8
F_{6}	13
F_{7}	21
F_{8}	34
F_{9}	55
F_{10}	89

Fibonacci Number	Values
F_{0}	1
F_{1}	1
F_{2}	2
F_{3}	3
F_{4}	5
F_{5}	8
F_{6}	13
F_{7}	21
F_{8}	34
F_{9}	55
F_{10}	89

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Construct the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent are:

$$
\{1\}:=\{\phi,\{1\}\} \text { Count }: 2
$$

Construct the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent are:

$$
\begin{aligned}
\{1\} & :=\{\phi,\{1\}\} \text { Count }: 2 \\
\{1,2\} & :=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\}
\end{array}\right\} \text { Count }: 3
\end{aligned}
$$

Construct the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent are:

$$
\left.\begin{array}{c}
\{1\}:=\{\phi,\{1\}\} \text { Count }: 2 \\
\{1,2\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\}
\end{array}\right\} \text { Count }: 3
\end{array}\right\} \begin{aligned}
& \phi \\
& \{1,2,3\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\} \\
\{1,3\}
\end{array}\right\} \text { Count }: 5
\end{aligned}
$$

Construct the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent are:

$$
\left.\begin{array}{c}
\{1\}:=\{\phi,\{1\}\} \text { Count }: 2 \\
\{1,2\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\}
\end{array}\right\} \text { Count }: 3 \\
\{1,2,3\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\} \\
\{1,3\}
\end{array}\right\} \text { Count }: 5
\end{array}\right\} \begin{aligned}
& \phi \\
& \{1,2,3,4\}:=\left\{\begin{array}{l}
\{1\},\{2\},\{3\},\{4\} \\
\{1,3\},\{2,4\},\{1,4\}
\end{array}\right\} \text { Count }: 8
\end{aligned}
$$

Construct the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent are:

$$
\left.\begin{array}{c}
\{1\}:=\{\phi,\{1\}\} \text { Count }: 2 \\
\{1,2\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\}
\end{array}\right\} \text { Count }: 3 \\
\{1,2,3\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\} \\
\{1,3\}
\end{array}\right\} \text { Count }: 5
\end{array}\right\} \begin{aligned}
& \{1,2,3,4\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\},\{4\} \\
\{1,3\},\{2,4\},\{1,4\}
\end{array}\right\} \text { Count }: 8 \\
& \{1,2,3,4,5\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\},\{4\},\{5\}, \\
\{1,3\},\{1,4\},\{1,5\},\{2,4\},\{2,5\},\{3,5\} \\
\{1,3,5\}
\end{array}\right\} \text { Count }: 13
\end{aligned}
$$

Construct the total number of subsets of $\{1, \ldots, n\}$ such that no two elements are adjacent are:

$$
\left.\begin{array}{c}
\{1\}:=\{\phi,\{1\}\} \text { Count }: 2 \\
\{1,2\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\}
\end{array}\right\} \text { Count }: 3 \\
\{1,2,3\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\} \\
\{1,3\}
\end{array}\right\} \text { Count }: 5
\end{array}\right\} \begin{aligned}
& \{1,2,3,4\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\},\{4\} \\
\{1,3\},\{2,4\},\{1,4\}
\end{array}\right\} \text { Count }: 8 \\
& \{1,2,3,4,5\}:=\left\{\begin{array}{l}
\phi \\
\{1\},\{2\},\{3\},\{4\},\{5\}, \\
\{1,3\},\{1,4\},\{1,5\},\{2,4\},\{2,5\},\{3,5\} \\
\{1,3,5\}
\end{array}\right\} \text { Count }: 13
\end{aligned}
$$

Path

Chemical graph

$i(G)$	Values
$i\left(P_{1}\right)$	2
$i\left(P_{2}\right)$	3
$i\left(P_{3}\right)$	5
$i\left(P_{4}\right)$	8
$i\left(P_{5}\right)$	13

F_{n}	Values		$i(G)$
F_{0}	1		
F_{1}	1		
F_{2}	2	$i\left(P_{1}\right)$	2
F_{3}	3	$i\left(P_{2}\right)$	3
F_{4}	5	$i\left(P_{3}\right)$	5
F_{5}	8	$i\left(P_{4}\right)$	8
F_{6}	13	$i\left(P_{5}\right)$	13
F_{7}	21	$i\left(P_{6}\right)$	21
F_{8}	34	$i\left(P_{7}\right)$	34

F_{n}	Values	$i(G)$	Values
F_{0}	1		
F_{1}	1		
F_{2}	2	$i\left(P_{1}\right)$	2
F_{3}	3	$i\left(P_{2}\right)$	3
F_{4}	5	$i\left(P_{3}\right)$	5
F_{5}	8	$i\left(P_{4}\right)$	8
F_{6}	13	$i\left(P_{5}\right)$	13
F_{7}	21	$i\left(P_{6}\right)$	21
F_{8}	34	$i\left(P_{7}\right)$	34

$i\left(P_{n}\right)=F_{n+1}$

Figure : Examples for the star S_{n}

$\left.\left.\dot{l}\left(S_{n}\right)=1+n+1\right) C_{2}+(n-1) C_{3}+\ldots+1+1\right) C_{n-1}$
$\left.\dot{l}\left(S_{n}\right)=1+1+(n-1) C_{1}+(n-1) C_{2}+(n-1) C_{3}+1\right) \cdot(n-1$ $i\left(S_{n}\right)=1+2^{n-1}$

We Know that. $n C_{0}+n C_{1}+n C_{2}+\ldots+n C_{n}=2^{n}$

The Fibonacci number $F\left(S_{n}\right)$ can be computed by counting the number of admissible vertex subsets (they do not contain two adjacent vertices) containing the vertex n or not containing n. Thus

$$
\begin{gathered}
F\left(S_{n}\right)=1+2^{n-1} . \\
i\left(S_{n}\right)=1+2^{n-1} .
\end{gathered}
$$

H. Prodinger and R. F. Tichy, 1982

Theorem 3
For every tree T with n vertices, we have

$$
F_{n+1}=i\left(P_{n}\right) \leq i(T) \leq i\left(S_{n}\right)=2^{n-1}+1
$$

with right equality holds if and only if T is a star S_{n} and the left equality holds if and only if T is a path P_{n}.

If G is a simple connected graph.

If G is a simple connected graph, then

$$
? ? \leq i(G) \leq ? ?
$$

If G is a simple connected graph.

If G is a simple connected graph, then

$$
\begin{gathered}
? ? \leq i(G) \leq ? ? \\
n+1=i\left(K_{n}\right) \leq i(G) \leq i\left(S_{n}\right)=1+2^{n-1} .
\end{gathered}
$$

If G is a simple connected graph.

Theorem 4

Let G be a simple connected graph, then

$$
n+1=i\left(K_{n}\right) \leq i(G) \leq i\left(S_{n}\right)=1+2^{n-1}
$$

Equality in the first inequality holds if and only if $G \cong K_{n}$ and the equalilty in the second inequality holds if and only if S_{n}.

Simple connected graph G_{1} on 15 vertices.

$$
i\left(G_{1}\right)=? ? ? .
$$

Gutman and Polansky 1986

I. Gutman, O.E. Polansky, Mathematical Concept in Organic Chemistry, Springer, Berlin, 1986.
Lemma 5

Let $G=(V, E)$ be a graph.
(i) If $u v \in E(G)$, then $i(G)=i(G-u v)-i(G-\{N[u] \cup N[v]\})$.
(ii) If $v \in V(G)$, then $i(G)=i(G-v)+i(G-N[v])$.
(iii) If $G_{1}, G_{2}, \ldots, G_{t}$ are the connected components of the graph G, then

$$
i(G)=\prod_{j=1}^{t} i\left(G_{j}\right)
$$

In chemical graph theory, the molecular structure of a compound is often presented with a graph, where the atoms are represented by vertices and bonds are represented by edges.

Graph representation for the above chemical structure

Blue refers Carbon atoms, Red refers Hydrogen atoms.

Molecular Graph

Molecular Graph

Structural formula for 2,2,4,6-tetramethylheptane (on the left) and its corresponding molecular graph (on the right).

Naphthalene Balls

Naphthalene Structure

Chemical graph

Chemical graph

Naphthalene N.
Calculate $i(N)$

Chemical graph

Chemical graph

$$
N-\{4\}
$$

$$
i(N-\{4\})=i\left(P_{9}\right)=F_{10}=89
$$

Chemical graph

Chemical graph

$$
N-\{3,4,6,10\}
$$

$$
i(N-\{3,4,6,10\})=i\left(P_{3}\right) * i\left(P_{3}\right)=F_{4} * F_{4}=5 * 5=25
$$

$$
\begin{aligned}
& i(N)=i(N-\{4\})+i(N-\{\text { Neighbors of } 4\}) \\
& i(N)=i(N-\{4\})+i(N-\{3,4,6,10\})=89+25=114
\end{aligned}
$$

$$
i(N)=114
$$

$$
\begin{aligned}
& i(N)=i(N-\{4\})+i(N-\{\text { Neighbors of } 4\}) \\
& i(N)=i(N-\{4\})+i(N-\{3,4,6,10\})=89+25=114
\end{aligned}
$$

$$
i(N)=114
$$

H.Hua, X. Xu, H. Wang, Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index, Filomat 28:3 (2014) 451-461.

Theorem 6
Let T be a tree, not isomorphic to S_{n}, with n vertices. Then

$$
i(T) \leq 3\left(2^{n-3}\right)+2
$$

with equality if and only if $T \cong D_{1, n-3}$.
H.Hua, X. Xu, H. Wang, Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index, Filomat 28:3 (2014) 451-461.

Theorem 6
Let T be a tree, not isomorphic to S_{n}, with n vertices. Then

$$
i(T) \leq 3\left(2^{n-3}\right)+2
$$

with equality if and only if $T \cong D_{1, n-3}$.

Double Star $D_{\alpha, \beta}$.

國 Y. Hu, Y. Wei, The number of independent sets in a connected graph and its complement, The Art of Discrete and Applied Mathematics 1 (2018) 1-10.

Theorem 7
Let T be a tree of order n with connected complement \bar{T}, then

$$
i(T)+i(\bar{T}) \geq 2 n+F_{n+1}
$$

with equality if and only if $T \cong P_{n}$, where F_{n+1} is the Fibonacci Number.

Theorem 8
Let T be a tree of order n with connected complement \bar{T}, then

$$
i(T)+i(\bar{T}) \leq 2+2 n+2 n^{n-3}+2^{n-2}
$$

with equality if and only if $T \cong D_{1, n-3}$.

Unicyclic Graphs

Theorem 9
If G is a unicyclic graph of order n, then

$$
i(G) \geq F_{n-1}+F_{n+1}
$$

and equality occurs if and only if $G \cong C_{n}$ or $G \cong L_{n, 3}$.

Unicyclic Graphs

Theorem 9

If G is a unicyclic graph of order n, then

$$
i(G) \geq F_{n-1}+F_{n+1}
$$

and equality occurs if and only if $G \cong C_{n}$ or $G \cong L_{n, 3}$.

Unicyclic Graphs

Theorem 10

If G is a unicyclic graph of order n, then

$$
i(G) \leq 3 * 2^{n-3}+1
$$

and equality holds if and only if G is a C_{4} or $G \cong S_{n}^{+}$.

Unicyclic Graphs

Theorem 10

If G is a unicyclic graph of order n, then

$$
i(G) \leq 3 * 2^{n-3}+1
$$

and equality holds if and only if G is a C_{4} or $G \cong S_{n}^{+}$.

Bicyclic Graphs

Theorem 11

If G is a bicyclic graph of order n, then

$$
i(G) \leq 5 * 2^{n-4}+1
$$

, equality holds if and only if $G \cong B_{1}$.

Bicyclic Graphs

Theorem 11

If G is a bicyclic graph of order n, then

$$
i(G) \leq 5 * 2^{n-4}+1
$$

, equality holds if and only if $G \cong B_{1}$.

Bicyclic Graphs

Theorem 12

If G is a bicyclic graph of order n, then

$$
i(G) \geq 5 * F_{n-2}
$$

, equality holds if and only if $G \cong B_{2}$.

Transformation I

Let G_{1} and G_{2} be the graphs in Transformation I. Then $i\left(G_{1}\right)>i\left(G_{2}\right)$.

Transformation II

Let A_{1}, A_{2} and A_{3} be the graphs in Transformation II. Then $i\left(A_{1}\right)>i\left(A_{2}\right)$ or $i\left(A_{1}\right)>i\left(A_{3}\right)$.

Transformation III

Let B_{1} and B_{2} be the graphs in Transformation III. Then $i\left(B_{1}\right)>i\left(B_{2}\right)$

Transformation IV

Let D_{1} and D_{2} be the graphs in Transformation IV. Then $i\left(D_{1}\right)>i\left(D_{2}\right)$.

Transformation V

Let E_{1} and E_{2} be the graphs in Transformation V. Then $i\left(E_{1}\right)>i\left(E_{2}\right)$.

Results connecting $i(G)$ with other distance based topological indices.

Results connecting $i(G)$ with other distance based topological indices.
H. Hua, X. Hua, H. Wang, Further results on the Merrifield-Simmons index, Discrete Applied Mathematics, 283 (2020) 231-241.

Results connecting $i(G)$ with other distance based topological indices.
H. Hua, X. Hua, H. Wang, Further results on the Merrifield-Simmons index, Discrete Applied Mathematics, 283 (2020) 231-241.
K. C. Das, S. Elumalai, A. Ghosh, and T. Mansour, On conjecture of MerrifieldSimmons index, Discrete Applied Mathematics 288 (2021) 211-217.

Results connecting $i(G)$ with other distance based topological indices.
H. Hua, X. Hua, H. Wang, Further results on the Merrifield-Simmons index, Discrete Applied Mathematics, 283 (2020) 231-241.
K. C. Das, S. Elumalai, A. Ghosh, and T. Mansour, On conjecture of MerrifieldSimmons index, Discrete Applied Mathematics 288 (2021) 211-217.
H. Hua, M. Wang, On the Merrifield-Simmons Index and some Wiener-Type Indices, MATCH Commun. Math. Comput. Chem. 85 (2021) 131-146.

Let G be a simple connected graph of order n with vertex

 set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.Let G be a simple connected graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.

Graph Matrices: Adjacency matrix:

$$
A(G):=\left[a_{i j}\right]_{n \times n}, a_{i j}=\left\{\begin{array}{cc}
1 & \text { if } \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}} \in \mathrm{E}(\mathrm{G}) \\
0 & \text { otherwise }
\end{array}\right.
$$

Degree diagonal matrix: $\quad D(G):=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
Laplacian Matrix:
$L(G):=D(G)-A(G)$.
Signless Laplacian Matrix: $Q(G):=D(G)+A(G)$.

Adjacency spectrum: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Laplacian spectrum :
 $$
\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}=0
$$
 Signless Laplacian spectrum : $q_{1} \geq q_{2} \geq \ldots \geq q_{n}$.

Randić Index

In 1975, M. Randić introduces the connectivity index, defined by

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d(u) d(v)}}
$$

P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs, Linear Algebra Appl. 432 (2010) 3319-3336. index of graphs, Linear Algebra Appl. 432 (2010) 3319-3336.

Conjectures

Let G be a connected graph on $n \geq 4$ vertices with signless Laplacian index q_{1} and Randić index R. Then
Conjecture 1

$$
q_{1}-R \leq \frac{3}{2}(n-2)
$$

equality holds if and only if $G \cong K_{n}$.
Conjecture 2

$$
\frac{q_{1}}{R} \leq\left\{\begin{array}{cc}
\frac{4 n-4}{n}, & 4 \leq n \leq 12 \\
\frac{n}{\sqrt{n-1}}, & n \geq 13
\end{array}\right.
$$

equality holds if and only if $G \cong K_{n}$, for $4 \leq n \leq 12$ and for S_{n} for $n \geq 13$.

Proofs supporting Conjecture 1

圊 H. Deng, S. Balachandran, S. Ayyaswamy, On two conjectures of Randić index and the largest signless Laplacian eigenvalue of graphs, J. Math. Anal. Appl. 411 (1) (2014) 196-200.

Proofs supporting Conjecture 1

H. Deng, S. Balachandran, S. Ayyaswamy, On two conjectures of Randić index and the largest signless Laplacian eigenvalue of graphs, J. Math. Anal. Appl. 411 (1) (2014) 196-200.

Proofs supporting Conjecture 2
目 B. Ning, X. Peng The Randić index and signless Laplacian spectral radius of graphs, Discrete Mathematics 342 (2019) 643-653.

Boris Furtula

Geometric-Arithmetic Index

In 2009, Vukičević and Furtula introduced a new class of topological index, named the geometric-arithmetic index, defined by

$$
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{d(u) d(v)}}{d(u)+d(v)}
$$

(1) M. Aouchiche, P. Hansen, Comparing the GeometricArithmetic Index and the Spectral Radius of Graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 473-482.

Conjecture

For any connected graph G on $n \geq 8$ vertices with spectral radius λ_{1} and geometric-arithmetic index $G A$, Randić index R,

$$
\frac{G A}{\lambda_{1}^{2}} \leq \frac{R}{2}
$$

with equality if and only if G is the cycle C_{n}.
(Z. Du, B. Zhou, On Quotient of Geometric-Arithmetic Index and Square of Spectral Radius, MATCH Commun. Math. Comput. Chem. 85 (2021) 77-86.
Z. Du, B. Zhou, On Quotient of Geometric-Arithmetic Index and Square of Spectral Radius, MATCH Commun. Math. Comput. Chem. 85 (2021) 77-86.

Theorem 13

Let $r \geq 2$ be a fixed integer, and x_{r} the largest positive root of the equation

$$
(x-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{x+1}=x-3+\frac{4 \sqrt{2}}{3}
$$

For any connected graph G on $n>x_{r}$ vertices, we have

$$
\frac{G A}{\lambda_{1}^{r}} \leq \frac{R}{2^{r-1}}
$$

with equality if and only if G is the cycle C_{n}.
Z. Du, B. Zhou, On Quotient of Geometric-Arithmetic Index and Square of Spectral Radius, MATCH Commun. Math. Comput. Chem. 85 (2021) 77-86.

Theorem 13

Let $r \geq 2$ be a fixed integer, and x_{r} the largest positive root of the equation

$$
(x-3+2 \sqrt{2}) \cos ^{r} \frac{\pi}{x+1}=x-3+\frac{4 \sqrt{2}}{3}
$$

For any connected graph G on $n>x_{r}$ vertices, we have

$$
\frac{G A}{\lambda_{1}^{r}} \leq \frac{R}{2^{r-1}}
$$

with equality if and only if G is the cycle C_{n}.
Set $r=2$. Note that $x_{2} \approx 7.66251$. It is then reduced to the solution of the conjecture.

Relation between $i(G)$ with λ_{1}, μ_{1}, or q_{1} is still unexplored.

